Climate and Forest Wildfire in the Western United States: recent trends and projections

September 15, 2006

Anthony Westerling, presenting

with contributions from

B. Bryant, D. Cayan, M. Dettinger, H. Hidalgo, D. Schimmel, T. Swetnam

with support from

California Energy Commission - CCCC

NOAA OGP - CAP

USFS - RMRS, SRS

Western U.S. Burned Area - All Sources

Why Has Forest Wildfire Increased?

Management

- Grazing and fire suppression reduced burned area
- Reduced burned area led to biomass accumulation in some forests
- Increased biomass reduced the effectiveness of suppression efforts

Climate

- Fire activity driven
 by antecedent
 moisture and
 concurrent drought
- Climatologic
 extremes have been
 more frequent in
 recent decades

Consequences? Fuel accumulation reduces effectiveness of suppression 1867 American River

Why Has Wildfire Activity Increased?

Management

- fire suppression reduced burned area mid-20th century
- Reduced burned area led to biomass accumulation in some forests
- Increased biomass reduced the effectiveness of suppression efforts

Climate

- Fire activity driven
 by antecedent
 moisture and
 concurrent drought
- Climatologic
 extremes have been
 more frequent in
 recent decades

Composite Drought Indices for Wildfire by Coarse Vegetation Class

Percent of West in Drought or Wet Conditions

Mean Western MAMJJA Temperature

Research Questions

- What kinds of fire have increased?
 - ie, fuel limited and/or energy limited?
- Where has fire activity increased?
- Why has fire activity increased?
 - ie, why some places and not others?
 - How much can hydro-climate explain?
- What are the implications for climate change?

Fire History Data

- Federal Land Agencies' Fire Records
 - USFS & NPS units reporting 1970-2003
 - BIA units reporting 1972-2003
 - BLM units reporting 1980-2003
- Large Fires (> 400 ha (1000 acres))
- Size, Location, Elevation
- Dates: Discovery and Control
- Vegetation Type: Forest/Not Forest
- Missing values filled in from LDAS

Region of Analysis: Western US Forest Area Reporting Wildfires Since 1970

Since the mid-1980s

Large Forest Wildfires Have Increased 300%

Since the mid-1980s

Large Forest Wildfires
Have Increased 300%

Other Large Wildfires
Have Not Changed
Significantly

Grass/Shrub Fires and Temperature

Correlation: 0.08

Forest Fires and Temperature

Correlation: 0.70

Western US Forest Wildfires and Spring-Summer Temperature

Western US Large Forest Wildfires

1987-03 FOREST AREA BURNED IS 6.7 TIMES 1970-86 AREA

AREA BURNED IN FORESTS IN FIRES > 1000 ACRES, USF & NPS UNITS REPORTING FROM 1970 ON

Streamflow Center Timing and Large Forest Fire Frequency

Late Snowmelt Years

Early Snowmelt Years

1970 - 2003, Park and Forest Service Fires over 1000 acres

Forest Vulnerability: Early - Late Moisture Deficit

Northern Rockies: Early versus Late Snowmelt

Climate Change Assessment for CA Wildfire

- Logistic Regression
- 1/8 degree gridded wildfire, downscaled climatic, and simulated hydrologic variables
- Proxy vegetation categories in statistical fire model vary over time
- VIC vegetation layer fixed
- Risk assessment based on fixed development: 2000 census
- Crude empirical estimates of damage ratio and improved ratio

Wildfire in California

Currently, Highest California Wildfire Risks Are Mostly Concentrated in:

- Coastal Southern California
- Sierra Nevada Foothills
 & Mountains (< 7000 Ft Elevation)

Wildfire Scenarios

Our Scenarios Envision a Wide Range of Possible Futures...

Increased Wildfire Risks

... But all of our Scenarios Result in Increased Fire Risks For California.

Different Impacts Within CA

The Greatest Increased
CA Wildfire Risks are
Concentrated in
Northern California

Greater Uncertainty for Wildfire Risks in **Southern** California

Property Losses:Warning Signs

For the GFDL A2 Scenario (Warm & Dry), Increased Property Losses in Northern California.

Losses Increase Northeast of Sacramento into the Sierra Foothills.

Structures & Property Values Based on 2000 Census.

Full extent of **future risks depends On Development & Population Growth** in the Foothills and Mnts.
Of the Sierra Nevada

